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(Static) Matrix Recovery

@ Goal: recover a low-rank matrix My from sparse and noisy
observations.

@ Each observation Y'is a linear measurement of Mj:
Y= (X, M) + & =Tr(X" M) + ¢ (1)

@ Notation:

e X: measurement matrix of size my X msy

Mp: the unknown static low-rank matrix

(X, Mp): matrix inner product (linear measurement)
&: additive noise (zero-mean)
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(Static) Matrix Recovery

@ Goal: recover a low-rank matrix My from sparse and noisy
observations.

@ Each observation Y'is a linear measurement of Mj:
Y= (X, M) + & =Tr(X" M) + ¢ (1)

@ Notation:

e X: measurement matrix of size my X msy

Mp: the unknown static low-rank matrix

(X, Mp): matrix inner product (linear measurement)
&: additive noise (zero-mean)

@ Two examples:

o When Xis a 0-1 sampling matrix, (1) is a matrix completion problem.
o When X is a rand Gaussian matrix, (1) is a compressed sensing
problem.
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@ The static model assumes the low-rank matrix My is fixed across all
time. But in many real-world applications, the underlying structure
evolves over time.

@ To model such time-varying structure, we introduce a dynamic
formulation:

Yt:<Xtalw?>+£t (t=1,....7) (2)

o Goal: recover a sequence of matrices {M?} L, that are low-rank and
vary smoothly with time.
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@ The static model assumes the low-rank matrix My is fixed across all
time. But in many real-world applications, the underlying structure
evolves over time.

@ To model such time-varying structure, we introduce a dynamic
formulation:
Yt:<Xt7w>+£t (t:].,,T) (2)
o Goal: recover a sequence of matrices {M?} L, that are low-rank and
vary smoothly with time.

Although the dynamic matrix sequence {M?} [, can be viewed as a
third-order tensor M? € R™*m2xT this paper chooses not to use global
tensor regularization. Instead, it applies local smoothing across time,
which is more flexible and adaptive for temporal variation.
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Prior Work: Static Nuclear Norm Estimation

e Goal: recover a sequence of low-rank matrices {M?} ],
e Koltchinskii et al. (2011):

ne

~ o1
W = axgmin > (Yo~ (X M)’ + MM, e=1.o T

i=1

@ M: convex set of matrices (bounded Frobenius norm)

@ ||M||.: nuclear norm
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Prior Work: Static Nuclear Norm Estimation

e Goal: recover a sequence of low-rank matrices {M?} ],
e Koltchinskii et al. (2011):

ne

~ o1
W = axgmin > (Yo~ (X M)’ + MM, e=1.o T

i=1

@ M: convex set of matrices (bounded Frobenius norm)

@ ||M||.: nuclear norm

Error bound:

~ ) 1/2
(mama) 58— ] < € L e
t

Koltchinskii, V., Lounici, K., Tsybakov, A. B. (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion, The Annals of Statistics, 39(5),
2302-2329.
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Kernel Function

Smoothing Estimator:

WA= argmin (i ) Loss (M) + A M, £= 1,000 T
J:

o Weight wp(j—t) = %K(%) where K(-) is kernel function, and h is
bandwidth.

Kernel Assumptions:
o (FUOXIFRME) Symmetric: K(x) = K(—x), defined on [—1,1]
o (J3—1K) Integrates to 1: [ K(x)dx =1
o (ZM EBS) Finite second moment: « K) = [ X*K(x)dx < o0
o ((FHFRHBER) Finite squared norm: R(K) = [ K*(x)dx < oo
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Temporally Weighted Low-Rank Estimation

e Model: Estimate M via temporally weighted nuclear-norm penalized
regression:

-

~ . .

M = argm&n;wh(j —t)
J:

nj

%Z(Yﬁ_ (Xjis M))?

J =1

(R ENSIRETR)

+AIMI. - (3)

\

o Notation:

Yji: Observation i at time j

Xji: Corresponding measurement matrix

wp(j — t): Kernel weight centered at t (bandwidth h)
nj: Number of samples at time j

|IM]|.: Nuclear norm regularization
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Optimization Algorithm

FISTA-style Dynamic Estimation Algorithm

L: Input: {Xj, Yi}L., bandwidth h, steps K, tolerance tor
2: fort=1to T do
3 Initialize Mg_l) — Mi_1, M§°> —~ M1, so=1,s1=1
4 for k=0 to K do .
K K | Ske1— K k—1
5: N M 4 =1L (M9 — mEk )
6
7
8
9

Compute weighted gradient VF:(NEk))
G NP — EVF(ND)
[U, D, V] + svd(G{)

: M U (D=2, . VT (SVT step)
10: Sk41 w
11: if |[F(MTD) — F(MY)| < tor then
12: break
13: end if
14: end for
15 M« MY
16: end for

17: Return: {M:}[,
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Main Theoretical Results

log(m1 4+ m2)
ne

B [IM} — M| < inf{IM — MOIZ+ MM} + C- (Thm 1)

~ . log(m1 + ma2)
M — MP|I7 < lﬁf{HM* M|+ MM} + C- T —

with probability at least 1 —§ (Thm 2)

”I\A/I?\_MQHFSCA\/10g(m1+m2)~max(m1,m2)-rt
ne

with probability at least 1 —§ (Thm 3)

max_|[M} — M|[F < C-
1<t<T

log(m1 + m2) - max(my, ma) - r
Nmin

with probability at least 1 —§ (Thm 4)
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Synthetic Experiments: Recovery Accuracy

o Used Kernel: Epanechnikov Kernel

K =2(1-2), <1
@ Setup:
o Generate dynamic low-rank matrices M? = A.B] with rank = r
o Observations Y;; generated by partial noisy linear measurements:
Vi = (Xei, MY) + &
@ Compare proposed method with the following baselines:
e Static: Classical nuclear-norm estimator IT/I;\ applied independently at
each time t
o TwoStep: Perform static estimation first, then apply temporal kernel
smoothing over M)
e Tensor: Tensor completion model using the sum of nuclear norms

(SNN):

3
N =arg  min [|Po(N) = Y[3+ XD [N
=1

NERTX my Xmg
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Real-World Experiment: Recommendation System

Dataset: Netflix Movie Ratings
(https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data)

o Task: Recover user-movie ratings dynamically from sparse
observations.
o Dataset Description:
o Netflix dataset: 3036 users, 1034 movies, total ratings ~ 2.34M.
e Time span divided into T = 100 intervals.
@ Methods Compared:

e Proposed (Dynamic Low-Rank)

e Static

e Two-Step

o Tensor Completion (sum of nuclear norms)

e Performance Metric: Test Mean Squared Error (MSE)
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Real-World Experiment: Recommendation System
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Conclusion: Proposed method significantly outperforms benchmarks in predicting
dynamic user ratings.
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Real-World Experiment: Video Data

Dataset: DAVIS 2017 Video Dataset
(https://davischallenge.org/davis2017 /code.html#unsupervised)

@ Task: Recover dynamic low-rank video from compressed video frames.
o Dataset Description:

e Video resolution: 480 x 854 pixels per frame.

o Compression rate: Observations sampled at ~ 15% per frame.
o Methods Compared:

o Proposed (Dynamic Low-Rank)

e Static Matrix Completion
e Two-Step Smoothing
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https://davischallenge.org/davis2017/code.html#unsupervised

Real-World Experiment: Video Data

Figure 6. The top five pictures are the 5th, 25th, 45th, 65th, and 85th original frames in the lions video, the second rows are the c di i of the proposed
DLR method and the third and fourth rows are the benchmarks Static and TwoStep, respectively.
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e Adaptive weights (e.g., learn an one-dimensional kernel)?

@ Incorporate autoregressive or recurrent temporal structures (e.g.,
VAR, RNN) to better model temporal dependency.

@ slice-wise nuclear norms VS tensor nuclear norm?
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