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(Static) Matrix Recovery

Goal: recover a low-rank matrix M0 from sparse and noisy
observations.
Each observation Y is a linear measurement of M0:

Y = ⟨X,M0⟩+ ξ = Tr(X⊤M0) + ξ (1)

Notation:
X: measurement matrix of size m1 × m2

M0: the unknown static low-rank matrix
⟨X,M0⟩: matrix inner product (linear measurement)
ξ: additive noise (zero-mean)

Two examples:
When X is a 0-1 sampling matrix, (1) is a matrix completion problem.
When X is a rand Gaussian matrix, (1) is a compressed sensing
problem.

Presenter: Ben-Zheng Li Dynamic Matrix Recovery June 2025 3 / 16



(Static) Matrix Recovery

Goal: recover a low-rank matrix M0 from sparse and noisy
observations.
Each observation Y is a linear measurement of M0:

Y = ⟨X,M0⟩+ ξ = Tr(X⊤M0) + ξ (1)

Notation:
X: measurement matrix of size m1 × m2

M0: the unknown static low-rank matrix
⟨X,M0⟩: matrix inner product (linear measurement)
ξ: additive noise (zero-mean)

Two examples:
When X is a 0-1 sampling matrix, (1) is a matrix completion problem.
When X is a rand Gaussian matrix, (1) is a compressed sensing
problem.

Presenter: Ben-Zheng Li Dynamic Matrix Recovery June 2025 3 / 16



Motivation

The static model assumes the low-rank matrix M0 is fixed across all
time. But in many real-world applications, the underlying structure
evolves over time.
To model such time-varying structure, we introduce a dynamic
formulation:

Yt = ⟨Xt,M0
t ⟩+ ξt (t = 1, . . . ,T) (2)

Goal: recover a sequence of matrices {M0
t }T

t=1 that are low-rank and
vary smoothly with time.

Remark
Although the dynamic matrix sequence {M0

t }T
t=1 can be viewed as a

third-order tensor M0 ∈ Rm1×m2×T, this paper chooses not to use global
tensor regularization. Instead, it applies local smoothing across time,
which is more flexible and adaptive for temporal variation.
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Prior Work: Static Nuclear Norm Estimation

Goal: recover a sequence of low-rank matrices {M0
t }T

t=1

Koltchinskii et al. (2011):

M̂λ
t = arg min

M∈M

1

nt

nt∑
i=1

(Yti − ⟨Xti,M⟩)2 + λ∥M∥∗, t = 1, · · · ,T

M: convex set of matrices (bounded Frobenius norm)
∥M∥∗: nuclear norm

Error bound:

(m1m2)
−1/2∥M̂λ

t − M0
t ∥F ≤ C

{
log(m1 + m2) · max(m1,m2)rt

nt

}1/2

Koltchinskii, V., Lounici, K., Tsybakov, A. B. (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion, The Annals of Statistics, 39(5),
2302–2329.
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Kernel Function

Smoothing Estimator:

M̃λ
t = arg min

M

T∑
j=1

ωh(j − t) · Lossj(M) + λ∥M∥∗, t = 1, · · · ,T

Weight ωh(j− t) = 1
hK

(
j−t
h

)
, where K(·) is kernel function, and h is

bandwidth.

Kernel Assumptions:
(中心对称性) Symmetric: K(x) = K(−x), defined on [−1, 1]

(归一化) Integrates to 1:
∫

K(x)dx = 1

(二阶矩有界) Finite second moment: α(K) =
∫

x2K(x)dx < ∞
(平方积分有界) Finite squared norm: R(K) =

∫
K2(x)dx < ∞
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Temporally Weighted Low-Rank Estimation

Model: Estimate M0
t via temporally weighted nuclear-norm penalized

regression:

M̃λ
t = arg min

M

T∑
j=1

ωh(j − t)
[
1

nj

nj∑
i=1

(Yji − ⟨Xji,M⟩)2
]

︸ ︷︷ ︸
(核化动态保真项)

+λ∥M∥∗ (3)

Notation:
Yji: Observation i at time j
Xji: Corresponding measurement matrix
ωh(j − t): Kernel weight centered at t (bandwidth h)
nj: Number of samples at time j
∥M∥∗: Nuclear norm regularization
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Optimization Algorithm
FISTA-style Dynamic Estimation Algorithm
1: Input: {Xji,Yji}T

j=1, bandwidth h, steps K, tolerance tor
2: for t = 1 to T do
3: Initialize M(−1)

t ← Mt−1, M(0)
t ← Mt−1, s0 = 1, s−1 = 1

4: for k = 0 to K do
5: N(k)

t ← M(k)
t +

sk−1−1

sk
(M(k)

t −M(k−1)
t )

6: Compute weighted gradient ∇Ft(N(k)
t )

7: G(k)
t ← N(k)

t − 1
Lf
∇Ft(N(k)

t )

8: [U,D,V]← svd(G(k)
t )

9: M(k+1)
t ← U · (D− 2λ

Lf
)+ · V⊤ (SVT step)

10: sk+1 ←
1+
√

1+4s2k
2

11: if |Ft(M(k+1)
t )− Ft(M(k)

t )| ≤ tor then
12: break
13: end if
14: end for
15: Mt ← M(k+1)

t
16: end for
17: Return: {Mt}T

t=1
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Main Theoretical Results

E
[
∥M̂λ

t − M0
t ∥2F

]
≤ inf

M

{
∥M − M0

t ∥2F + λ∥M∥∗
}
+ C ·

log(m1 + m2)

nt
(Thm 1)

∥M̂λ
t − M0

t ∥2F ≤ inf
M

{
∥M − M0

t ∥2F + λ∥M∥∗
}
+ C ·

log(m1 + m2)

nt
,

with probability at least 1− δ (Thm 2)

∥M̂λ
t − M0

t ∥F ≤ C ·

√
log(m1 + m2) · max(m1,m2) · rt

nt

with probability at least 1− δ (Thm 3)

max
1≤t≤T

∥M̂λ
t − M0

t ∥F ≤ C ·

√
log(m1 + m2) · max(m1,m2) · r

nmin

with probability at least 1− δ (Thm 4)

Presenter: Ben-Zheng Li Dynamic Matrix Recovery June 2025 9 / 16



Synthetic Experiments: Recovery Accuracy
Used Kernel: Epanechnikov Kernel

K(x) = 3

4
(1− x2), |x| ≤ 1

Setup:
Generate dynamic low-rank matrices M0

t = AtB⊤
t with rank = r

Observations Yti generated by partial noisy linear measurements:
Yti = ⟨Xti,M0

t ⟩+ ξti
Compare proposed method with the following baselines:

Static: Classical nuclear-norm estimator M̂λ
t , applied independently at

each time t
TwoStep: Perform static estimation first, then apply temporal kernel
smoothing over M̂λ

t
Tensor: Tensor completion model using the sum of nuclear norms
(SNN):

N̂λ = arg min
N∈RT×m1×m2

∥PΩ(N)− Y∥22 + λ

3∑
i=1

∥N(i)∥∗
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Synthetic Experiments: Recovery Accuracy
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Real-World Experiment: Recommendation System

Dataset: Netflix Movie Ratings
(https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data)

Task: Recover user-movie ratings dynamically from sparse
observations.
Dataset Description:

Netflix dataset: 3036 users, 1034 movies, total ratings ∼ 2.34M.
Time span divided into T = 100 intervals.

Methods Compared:
Proposed (Dynamic Low-Rank)
Static
Two-Step
Tensor Completion (sum of nuclear norms)

Performance Metric: Test Mean Squared Error (MSE)
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Real-World Experiment: Recommendation System

Conclusion: Proposed method significantly outperforms benchmarks in predicting
dynamic user ratings.
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Real-World Experiment: Video Data

Dataset: DAVIS 2017 Video Dataset
(https://davischallenge.org/davis2017/code.html#unsupervised)

Task: Recover dynamic low-rank video from compressed video frames.
Dataset Description:

Video resolution: 480 × 854 pixels per frame.
Compression rate: Observations sampled at ∼ 15% per frame.

Methods Compared:
Proposed (Dynamic Low-Rank)
Static Matrix Completion
Two-Step Smoothing
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Real-World Experiment: Video Data
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Future works

Adaptive weights (e.g., learn an one-dimensional kernel)?
Incorporate autoregressive or recurrent temporal structures (e.g.,
VAR, RNN) to better model temporal dependency.
slice-wise nuclear norms VS tensor nuclear norm?
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